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it 00 SUMMARY /)V

The radiative energy transfer to the base regions of a rocket from
exhaust plumes is studied analytically by considering the radiation from
semi-infinite cylindrical and infinite conical gas bodies of uniform
temperature and composition. The effect of nozzle shieldipg is con-
sidered. The results are in terms of the local apparent emissivity
in the base region. The expression for the spectral apparent emissivity
is in the integral form and requires in general a numerical integration.
For semi-infinite cylindrical gas bodies of small absorption coefficient,

wo asymptotic formulas obtained by direct integration are given.
Numerical results are presented for the spectral apparent emissivity as
a function of the cone angle which is zero for a cylinder, the height
of shielding, the spectral absorption coefficient, and the radial
distance in the base plane from the gas body. An approximate method
for calculating the total apparent emissivity with any given infrared
absorption spectrum of the gas is suggested by utilizing the concept
of mean path length. The method is illustrated by the calculation of
the total apparent emissivity for semi-infinite cylindrical gas bodies

of 002 and HZO at high temperatures. iq J HOR
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NOMENCIATURE

effective absorption coefficient based on gray-gas assumption, 1/ft.

spectral absorption coefficient, 1/ft.

dimensionless effective absorption coefficient (A = a re)

dimensionless spectral absorption coefficient (AX = a, re)

characteristic length defined by Eq. (C-6), ft.

parameter defined by Eq. (53), dimensionless

characteristic length defined by Eq. (C-1), ft.

first constant of Planck's law of radiation, ftthu/hr

second constant of Planck's law of radiation, ft °R

parameter defined by Eq. (50), dimensionless

characteristic length defined by Eq. (C-3), ft.

relative cumulative spectral radiance of a black body, defined
by Eq. (18), dimensionless

characteristic length defined by Eq. (C-5), ft.

elliptic integral of the first kind defined by Eq. (A-14),
dimensionless

elliptic integral of the second kind defined by Eq. (A-15),
dimensionless

spectral black-body emissive power, Btu/hr £¢% micron

configuration factor, dimensionless

configuration factor for the tangent region of a conical gas
body, dimensionless

first partial configuration factor defined by Eq. (E-3),
dimensionless

second partial configuration factor defined by Eq. (E-4),

dimensionless

iii
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third partial configuration factor defined by Eq. (E-6),
dimensionless

configuration factor for the asymptote region of a conical
gas body, dimensionless

height of the shielded portion of the gas body measured from
the base plane, ft.

dimensionless height of shielding (H = h/re), dimensionless

dimensionless axial distance measured from the base plane,
due to shielding, shown in Fig. 10, dimensionless

characteristic length defined by Eq. (C-2), ft.

spectral black-body intensity, Btu/hr sq ft steradian

characteristic length defined by Eq. (C-1), ft.

parameter defined as K = 1/R in Egs. (A-14) and (A-15),
dimensionless

dimensionless mean path length

characteristic length defined by Eq. (C-8), ft.

characteristic length defined by Eq. (C-9), ft.

parameter defined by Eq. (A-4),dimensionless

parameter defined by Eq. (56), dimensionless

parameter defined by Eq. (29), dimensionless

parameter defined by Eq. (29), dimensionless

value of parameter P evaluated at Bo’ defined by Eq. (32),
dimensionless

spectral radiative energy flux, Btu/hr £t

radial distance, ft.

bottom radius of the unshielded portion of gas body, ft.

iv



distance measured from viewed plane, ft.

dimensionless radial distance (R = r/re), dimensionless

dimensionless distance measured from viewed plane (Ro = ro/re),
dimensionless

path length through gas body, ft.

projection of the path length on the horizontal plame, ft.

dimensionless path length (S = s/re), dimensionless

absolute temperature, °R. |

distance measured from viewed plane axis, ft.

dimensionless distance from viewed plane (X = x/re), shown
in Fig. 10, dimensionless

distance along viewed plane axis measured from vertex of
cone, ft.

dimensionless distance along viewed plane axis (Y = y/re)
measured from vertex of cone, shown in Fig. 10,
dimensionless

dimensionless distance along viewed plane, measured from
the vertex to the point corresponding to Bé,

dimensionless

Greek letters

a
B
B!

one-half apex angle of cone, radian

polar angle, radian

projection of polar angle onto vertical plane, radian
upper limiting angle, due to shielding, given by Eq. (D-4)

for cone, radian
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lower limiting angle, due to shielding, given by Eq. (D-1)
for cone, radian

limit of integration on B' defined by Eqs. (23) and (42) for
cylindrical and conical gas bodies, respectively, radian

critical angle on B' defined by Eq (41), radian

total apparent emissivity, dimensionless

spectral apparent emissivity, dimensionless

parameter defined by Eqs. (7) and (9), dimensionless

partial effect of the tangent region of cone on € c defined

A

by the first integral in Eq. (60), dimensionless

partial effect of the asymptote region of come on ehc defined
by the second integral in Eq. (60), dimensionless

parameter defined by Eq. (A-1), dimensionless

value of the parameter M evaluated at B;, defined by Eq. (A-3),
dimensionless

inclination of the viewed plane to the cone axis, defined by
Eq. (43), radian

wavelength of radiation, micron

lower limit on wavelength for band absorption i, micron

upper limit on wavelength for band absorption i, micron

Stefan-Boltzmann constant, Btu/hr £ »*

limit of integration on the elliptic integrals in Eqs. (A-14)
and (A-15), radian

azimuth angle, radian

limit of integration on ¢ defined by Eq. (22), radian

vi



limit of integration on ¢ in the tangent region, defined by
Eq. (39), radian

limit of integration on @ in the asymptote region, defined
by Eq. (40), radian

Schmidt function defined by Eq. (33), dimensionless

variable of integration introduced in Eqs. (A-14) and (A-15),

radian
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INTRODUCTION

In the design of large booster vehicles it is recognized that
the base regions should be protected against heating by the rocket exhaust
plumes. vThis heating is due to radiation from the plume and to convection
from the gases forced back toward the base. The latter effect begins to
occur at altitudes where the ambient pressure has decreased substantially
and spread of engine jet results in flow interactions. The rise in
pressure due to slowing of the exhaust gases in the interaction regions
causes hot gases to flow toward the vehicle. Such flow reversals occur
in the center of a cluster of engines. In contrast, the base regions
outside the cluster are subjected primarily to radiative heating. Optimal
design of the required protection from heating in these regions might be
achieved if the actual magnitude of this radiative energy transfer could
be predicted. The present work describes an analytical attempt to
calculate the radiative energy transfer from rocket exhaust plumes to
the base regions by use of idealized physical models.

There exist no previous investigations of this problem in the
literature. However, a class of similar but little related problems
been considered by Schmidt,1 and very recently by Gray and Penner.2 They
were concerned with the radiative energy transfer to centrally located
base areas in cylindrical and conical gray-gas bodies.

The physical models under the present investigation are semi-
infinite cylindrical and infinite conical gas bodies of uniform temperature
and composition, with their axes perpendicular to the base plane. The
lower portion of the gas body is shielded by a cold opaque surface, which
simulates the rocket nozzle. The gas body emits and absorbs radiationm,

and is separated from its outer base region by a non-absorbing medium.




Scattering of radiation is assumed to be negligible. The results are
presented in terms of the local apparent emissivity from the gas body to
a differential area in the outer regions of the base plane. The apparent
emissivity in the present case is defined as the ratio of the radiative
energy flux arriving per unit area and time to that of a black surface at
the same temperature. In general, it is a function of the cone angle
which is zero for a cylindrical gas body, the absorption coefficient of
the gas, the height of shielding, and the radial distance in the base
plane from the gas body.

Presented first in the report are certain general considerations
of the problem. The integral expression of the spectral apparent emissiv-
ity is modified in terms of dimensionless governing parameters. The
conventional coordinate system is then transformed to a system which is
convenient for direct or numerical integration. An approximate method
utilizing the concept of mean path length is suggested for the calcula-
tion of the total apparent emissivity if the absorption spectrum of the
gas is given. In calculating the spectral apparent emissivities, direct
integration appears to be infeasible for the general case. The solution,
however, for the special case of black cylindrical and conical gas bodies
can be achieved. In addition, asymptotic expressions of the spectral
apparent emissivity are given for a cylindrical gas body of small absorp-
tion coefficient. Results of the spectral apparent emissivity for
different values of dimensionless governing parameters were computed
numerically and are presented in graphical form. The spectral apparent
emissivity is the same as the total apparent emissivity if a gray-gas

behavior is assumed for the gas body. The gray-gas assumption has been




widely used in most gaseous-radiation studies; however, its validity is
always under question and is very difficult to assess. Calculation of
the total apparent emissivity by use of a mean path length is shown to
be feasible for the semi-infinite cylindrical gas body with a given
infrared absorption spectrum. As an illustration, numerical results of
the total apparent emissivity are presented for semi-infinite gylindri—
cal bodies of co, (2500°F, 1 atm) and H,0 (2000°F, 1 atm) by use of the
existing spectral absorption dat:a.3’4 The implication of these calcu-

lations with respect to the gray-gas assumption is discussed.

GENERAL CONSIDERATIONS
Consider an arbitrary gas body of uniform temperature and
composition, emitting and absorbing radiative energy. The gas body is
separated from a differential area dA by a nonabsorbing medium. No
scattering of radiation exists in the system. For a spherical coordinate
system as shown in Fig. 1, the radiative energy flux incident per unit
area of dA and time, in the wavelength interval between A and A +d\

.05
is,

Qh = J[\ J[ Ibh 1 - e-axs) sin B cos B dB do (1)
P o
where be is the spectral black-body intensity, a, is the linear
spectral absorption coefficient, and the path length s 1is in general a
function of the gas body shape, the location irradiated, the azimuth
angle @ and the polar angle P. In the present study of semi-infinite
cylindrical and infinite conical gas bodies as shown in Fig. 2,

s = s(Q,h,r,9,B), where « 1is the cone angle, h is the height of




shielding, and r 1is the radial distance in the base plane from the
symmetrical axis. Defining the spectral apparent emissivity, €, as

the ratio of the radiative energy flux Qh to that of a black body at

the same temperature, there follows

-a_ s
g = % d[ U/A (L -e ak ) sin B cos P df do (2)
-

For semi-infinite cylindrical and infinite conical gas bodies, = %

r
eh(a,h,r,a ).

For calculations of different physical cases, it is highly
desirable to have all the governing parameters in Eq. (2) in dimension-

less form. In the present case the dimensionless governing parameters

are best defined as:

ﬂlw
e
1]

ﬂIH

A =a T, (3)

where r, is the bottom radius of the unshielded portion of gas body,

which corresponds to the exit radius of the rocket nozzle. Accordingly,

s = f_—— = S(Q,H,R,P,B) (4)
e
and
& = € (%LHR,A) ()

In terms of dimensionless parameters, Eq. (2) becomes

-A. S
€ = % ~/> U/> (1L - e Ax ) sin B cos P dB do (6)

"B 9

Equationh (6) can be rearranged into a different form as




& " Fhe @
where

FE-;;ff sin B cos P dB do (8)
- B 9

and

-AS
6. % d[ J[ e K sin B cos B dp dop 9

P o

It is readily seen from Eq. (8) that F is the configuration factor, or
in the present case the black-gas apparent emissivity. Consequently, ehc
can be regarded as the contribution due to the finite absorption coeffic-
ient of the gas body. It should be emphasized, however, that € c is
still a function of configuration. Equation (7) combined with Eqs. (8)
and (9) offers a slightly different physical interpretation of apparent
emissivity.

Equations (8) and (9) can be written in a more convenient form
for integration purposes. This is accomplished by introducing B' in
place of PB. From Fig. 1, the relationship among @ , B and B' can

be shown to be
tan B = sec@ tan B' (10)

The functions F and e become respectively

' 2
F = % j f °°qu’2t"’“5 S 5' dp' do (11)

+ tan B')

B' o (cos'@
and
: ) -A. S 2 ' 2 '
eh - 1 u/" k/‘ e AX cos taan B ;ec g ' do (12)
¢ ? 8" 9 (cos"@ + tan"B')



Direct integration of Eqs. (11) and (12) is in general difficult, if not
impossible. Further complication arises if the shielding is considered.

The total apparent emissivity is given as

® oo
[ E
e = owe)\ b). f (13)
[ E A [exp(c ,/AT)-1]
o o
where be is the spectral black-body emissive power, ¢ = 5.67 X 10-5
erg/cmzKasec is the Stefan-Boltzmann constant, T 1is the temperature

-5

of the gas body, and ¢, = 1,19 X 10 cmzerg/sec and c, = 1.44 cm K

1 2
are the first and second radiation constants in Planck's distribution
law. When one makes the gray-gas assumption as in many of the previous
gaseous-radiation studies, the spectral absorption coefficient 2, is
substituted for by an effective absorption coefficient independent of
wavelength, and consequently, € = €, - There exists no sound basis for
this assumption, and the accuracy of the final result depends entirely
on the empirical choice of an effective wavelength-independent absorption
coefficient. In many cases, the use of the gray-gas assumption is inev-
itable because of insufficient knowledge of the infrared absorption
spectrum of the gaseous medium. The next question, however, is whether
the total apparent emissivity can be calculated when the infrared
absorption spectrum is known by either experimental or theoretical means.
For the present study, an approximate method for calculating the total
apparent emissivity is suggested in the following.

The integral expression of €, in Eq. (6), combined with the

definition of F in Eq. (8), suggests the possible existence of an

approximate form for €:




€ = F (1 - e-AkL) (14)
where L = L(Q,H,R) can be interpreted as the dimensionless mean path
length of the gas body viewed from the base plane. The independent
nature of L with respect to AX is actually an assumption and can only
be justified by comparing the actual value of € from Eq. (6) with that
froﬁ Eq. (14) by use of a properly chosen function L(¢,H,R). It appears
that the choice of L is of the same nature as the choice of an effec-
tive absorption coefficient in the gray-gas assumption. However, in
certain specific cases as will be shown later, a proper choice of L
can be achieved through analytical considerations.

Substitution of Eq. (14) into Eq. (13) gives the total apparent

emissivity € as:

(1 - exp(-AXL)] dn

T ch J[
€ =
<'J'JZ'4 5 XS[exp(cz/KT) - 1]

(15)

If, at certain thermodynamic conditions, the infrared absorption spectrum
is known theoretically or experimentally, the local apparent emissivity
€(¢,H,R) can be obtained by evaluating the integral in Eq. (15) numeri-
cally. The absorption spectrum can be approximated by assuming a
constant value of spectral absorption coefficient over a narrow range of

wavelength, and thus Eq. (15) becomes

L
2i
T ch an
€(a,H,R) = 7 Z[l - exp(-AiL)]f 5
oT I N A [exp(cz/hT)— 1]
' 11

(16)

where the summation holds all over the subdivided ranges of wavelength.



Equation (16) may be written as

e(®,H,R) = F }; f1 - exp(-AiL)](DZi - Dli) o (17)
i
where the functions
1 ni T c1 dA
Dy Ao = = f (n = 1,2) (18)

are called the relative cumulative spectral radiance of a black body, and
are tabulated as a function of temperature and frequency.6

For most systems of physical interest, (AT) < 0.3 cm°K, and
the Planck's distribution law can be approximated by Wien's law with an
accuracy better than 1%.7 The total apparent emissivity in this case
becomes

ﬂClF 21 -5 _CZ/KT
€e(C,H,R) = A Z [l-exp(-AiL)]f AT e an (19)
oT I X

1i

or by performing the integration,

nch
€(,H,R) = o Z [1-exp(-AiL)] { [exP(-CZ/)\ZiT)] X
i

1 3 6 6 |
i 3 + 5 5 + 3 + 7 - [exp(cz/hliT)] X
A T A T B T T
r i
- 3+ 3 3+ — : + 64 } (20)
L ey D7 e AT )" (A T) ey




SPECTRAL APPARENT EMISSIVITY OF A SEMI-INFINITE
CYLINDRICAL GAS BODY (& = 0)

For the case of a semi-infinite cylinder viewed from its outer

base, the configuration factor defined in Eq. (l1) can be written as:

j f cos q> tan B sec g dp' do (21)
(cos P+ tan g")
where
9, = sin’! (—%—) (22)
and

2
1 [ .41 RL -1 /R°-1
= 3 Lt:zem (H)+tan (RH)] (23)
Equation (21) can be integrated directly by first integrating with respect

to tanZB' instead of PB', and the result is
F(H,R) = 1 sin B' tan-1 (sin B' tan @ ) (24)
? n o (<] o

The same expression can also be obtained by use of the tabulated result
of a more general configuration (Configuration P-2) in Ref. 8. In obtain-
ing Eq. (24), an approximation is found necessary for the limit of B' in
the integration. The upper limit B; as illustrated in Fig. 3 is being
approximated as the arithmetic mean of the two limiting angles, Bi and
ﬁé > for the partially viewed region due to shielding. The error resulting
from this approximation is in general quite small for a semi-infinite
cylinder, and becomes smaller as R increases, since the two limiting
angles for the partially viewed region are getting closer.

In the limiting case B; = % (corresponding to H = 0), an

exact result is obtained for Eq. (24) with no shielding,



F(O,R) = % sin”t <—§—> (25)

The term e defined in Eq. (12) can be expressed from simple

geometrical considerations as:

GAC(H’R) - u[\ Jf Ax cOos m tan B seczﬁ dp' do (26)
(cos 9 + tan B )

where the dimensionless path length as shown in Fig. 3 is given by

1/2
SR,B,0) = g (1R sin’) @27)
or in terms of B' and ¢ ,
1/2 1/2
SR,B',P) = tanZB' (1-8% sin%p)  (cos’p + tan’B') (28)

and ?, and Bé are given in Egs. (22) and (23), respectively. The same
approximation of the limit of Bé as mentioned before is also introduced
in Eq. (26). In general, direct integration of Eq. (26) is not feasible
and numerical computation must be performed. A more convenient form for

numerical computation can be achieved by introducing the variable

1/2
24, (1-R? sin’p) ) , 1/2
P = an B’ (cos"@ + tan B') (29)
Thus, Eq. (26) reduces to
P
P @
€ (H:R) = - = f AAX(l 8% sin cp)f -:—3— dp do (30)

o

After integration by parts with respect to P, there results

10




®

tanZB(; ° o(p_) do
€, (H,R) (31)
he f ° (cosz¢ + tanZB')
o
where /
: 1/2
24 (1-K” sin’Q) ) ,  1/2
Po(@) = Tan 5é + (cos™@ + tan ﬁo) (32)
and
P
-P p 2 [ eF
o(P) = e - Pe =~-P j 5 dp (33)
-00

The function &(P) has been tabulated by Schmidt.1

The integral appearing in Eq. (31) still must be evaluated
numerically at different locations specified by H and R. Two asymp-
totic expressions for €’ however, can be obtained through direct
integration. In the case of no shielding (H = 0), the asymptotic

expression of € for Ah << 1 1is given as (Appendix A):

AAX 2
r 1 R -1 x 1
SR = =7 [RE2<-2-’§>—<_R—)E1<E’E>] e

where E1 and E2 are the elliptic integrals of the first and second
kinds, respectively. For large R, the spectral apparent emissivity

can be expressed as

(35)

qo0 - 2

For the case with shielding (H # 0), the result for A <1
and R->> 1 can be derived as (Appendix B):
€K(H’R) = 7 sin 5; (36)

If there is no shielding (H = O, Bé = n/2), it gives the expression in

Eq. (35) as expected.

11



Numerical results for the spectral apparent emissivity in the
base plane of a semi-infinite cylindrical gas body are presented in Figs.
4, 5, 6, and 7. Values of the spectral apparent emissivity, ex , were
plotted versus R, the distance from central axis of the gas body in
radii, for different values of H and AX‘ Four values of the dimen-
sionless height of shielding, H, are given, H=0, 1, 2, and 4, and
three values are used for the dimensionless absorption coefficient,

Ak = 0.1, 0.4, » (black-body case). The black-body curves (Ak-a )
were calculated directly from Eq. (24), while the others were obtained
through numerical integration of Eq. (26) by use of a 7090 Digital
Computer.

For most practical applications, the range of R would probably
be less than 5, and the spectral apparent emissivity in the base plane is
about 0.1 or less, depending on the height of shielding. The effect of
shielding on the spectral apparent emissivity is shown to be significant
for a large spectral absorption coefficient, especially in the close
vicinity of the gas body.

Asymptotic variations of the spectral emissivity for a gas body
of small spectral absorption coefficient (Ah << 1) and without shielding
(H = 0) were calculated from the analytical expression, Eq. (34), and are
compared in Fig. 8 with the numerical results from the computer. It is
clearly indicated that the analytical expression Eq. (34) can be confi-
dently used to compute ex for cases when Ak < 0.1. 1In Fig. 9, a
comparison is made between the asymptotic results for AK << 1 and
R >> 1 calculated from Eq. (36) and the computer results. Again, it is
shown that Eq. (36) can be used for cases when Ak < 0.1 without intro-
ducing appreciable errors.

12




It should be emphasized again that all the results and discussion
in this section are directly applicable to the calculation of the total

apparent emissivity if the gray-gas assumption is employed. 1In that case,

AX = A, and € =

SPECTRAL APPARENT EMISSIVITY OF AN INFINITE CONICAL GAS BODY
For an infinite conical gas body of apex angle 2a, the config-

uration factor can be written as

° % 9 2
_2 cos @ tan B' sec’p'
F(Q,H,R) = = j j 5 55 ap' do (37)
.V (cos"@ + tan B')

From Fig. 10 it can be seen that at a certain location in the base plane,
the upper limit ¢°(B') depends upon whether there exist tangents or
asymptotes to the conical body for various values of f'. For calculating
the configuration factor in both the asymptote and tangent regions, Eq. (37)
can be split into two main integrations as

By, @

o ot

J[ J[ COSZQ tan B' seczﬁ' 4B do
B' o (cosz¢ + tanzﬁ')

cos @ tan B' sec 5
ff 5 dp' do
(cos P + tan B )

1 ¥+ F2 (38)

F(a,H,R)

ETTN)

+
AN

i}
ry

where F1 and F2

Bé is the critical angle at which the tangent gives way to the asymptote,

represent the first and second integrals, respectively,

and Dot and P, 2are the limiting azimuth angles in the tangent and

13



asymptote regions, respectively. The expression for ¢ot’ which defines
the limit of integration, can be obtained by setting the expression of the

path length (Appendix C) equal to zero, and the result is

o (B') = tan-l { R tan Q cot B' + (1-H tan @) (39)

[RZ-(l-H tan a)2]1/2

In the asymptote region, the conic section is always a hyperbola, and the

asymptote to the hyperbola determines the limit of Poa ?

tan

9,,(8") = ( tanf) (40)

The critical angle ﬁé is determined by realizing that Egqs. (39) and (40)

must be identical at B; , and the result is

(41)

o -1 (1-H tan @) tan &
Bc = tan [ R ]

Again, the upper limiting angle Bé in Eq. (38) has been approximated by
the arithmetic mean of the two limiting angles Bi and Bé , and it is

(see Appendix D),

{ -1<R1>+ta [ R«/z—- tan o

R -(1-H tan a) -(1 H tan a)«/—l
(42)
As shown in Fig. 10, the tangents to the cone for various values
of B (ﬁé <B'< Bé) trace a plane. The inclination angle 6 of the
plane to the cone axis, is a function of the space variables of the location

irradiated. The angle O is found to be equal to Bé ,

14




6 = - tan } [ (1-H ta; @) tan o ] = B (43)

The configuration factor of the triangular plane mentioned above

has also been given in Ref. 8 [Eq. (6), Fig. 2] as of the following form

T,y dx dy
F1 - 2cosejj . ; (44)
. (x + y +r "+ 2ry sin )

where x measures the distance from the plane axis, y is the distance
along the plane axis from the vertex, and T, is the distance from the
plane to the viewed area in the base plane. In dimensionless form,

Eq. (44) becomes

ZR cos 6 Y dy 4ax .
F1 = 3 5 (45)
) Y X (X + Y + R + ZROY sin 0)
where
X y_ %o
X=- , = s R = (46)
e e e

as indicated in Fig. 10. The dimensionless distance Ro’ in the present

case, may be expressed by:

R%-(1-H tan @)°
o R

(47)

i The two expressions for Fl’ the configuration factor in the
asymptote region, in Eqs. (38) and (45) are actually identical. The
geometrical relations between two sets of integration variables, B', @,

and X, Y, can be derived from Fig. 10 as

15



tan @ {R-[(1-H tan Q) (tan a)Y/c])}

! ]
tan P [R Y(tan @)/C - (1-H tan )] (48)
and
tan ¢ = X (49)
R - [(1-H tan @) (tan Q)Y/C]
where
cC = ~/R2 + (1-H tan Ot)2 tanza (50)
By use of the above relations, Eq. (38) becomes
ZROCOSZG ®w BY(tan @)/C ¢ ax ay
F(a,H,R) =F1+F2=—;;—{ 2,.,2. 2 . 2
) Yg X=0 (X™+Y +R° +2R°Y sin 8)
iy,
-C/tana BJYZtanZa-cz/c
+ . 2Y d)z( dy 2} (51)
(X“4+Y“+R_“4+2R_ Y sin 6)
o (o] [o] [e}

where Yo is the dimensionless distance, measured from the vertex to the

point corresponding to BC" :

Y = coi = [H+ (cot @ - 1)] (52)
B = ~/R2-(1-H tan a)2 (53)

and H is the axial distance, measured from the base plane, due to shielding,

and is given by

R2 - (1-4 tan a)2
R tan Bé + (1-H tan @) tan @

H = (54)

Direct integration of the first integral in Eq. (51) is given in Appendix

E, and the result is
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N O -1/Btan @) _1[.2 =, _ i
Fi=1x [(1 H tan @)tan o‘]tan <—"——‘C ) v [R H(1-H tan Q) tan

2(1-H tan a)z] X tan-l {g ‘:(I-H tan Q) + H tan a} } +

B tan Q B tan IS (RZ/BZ)E sec:2 o —

- ta
2 'J RZ+B2 tanza 14 J R2+B2 tanza J R2+B2tam2 a

2 .
2
(1-H tan a){:l - (-R— sC aJ tan a} (55)
B2 )c

where

. 2 ‘ 2
M E~/ [H + 1-H tan @ ] R2 + [(I-H tan @)H tan O - R2 + 2(1-H tan Cx)z]

tan Q

(56)

Similarly, the configuration factor F for the asymptote region, given

2

by the second integral in Eq. (51), can be integrated once, giving

_ (1-H tan @) tan @ -1 1B
F2 = C tan (C tan a)
(57)
® 2 2 .
B (YRotan o+ C'sin 68) dy
+;-6 [c/can a 222 [R%¥?sec’a 2 2
Y tan Q-C [——2——-— + ZROY sin 0 + Ro -B :I
C

The second term in the right hand side of the above equation can be inte-
grated directly only for two special cases. In the first case, when the
base plane is located at the vertex of the cone, 1-H tanQ =0, 6 =20

and F, is given by

2
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F, = 35 (58)

In the second case, an asymptotic result for R >> 1 can be derived.

This is

F. = B~ sinza 1
2 R 2 [R4-B2(1-H tan a)ztanza]

172 (59)
Note that, as R— 1 and H - O, F2 - 0.
In calculating the term erc? consideration should also be

given to the two separate regions, the tangent and asymptote regions,

Thus
1
B0 CPOt -A)\‘S 2 2
] ]
&\ (HR,0) = % f J e cos P ‘z:an B S‘Z*C Bz ap' do
1
8 o (cos™®@ + tan™B')
C
]
Po Foa s .2 2
+ 2 Ay cos @ tan B' sec B’ .
m ¢ 2 2 ,.2 B ®
1
. o (cos™®@ + tan B')
= € + € (60)
hcl Kcz

where GXc and e represent the first and second integrals,

1 2
respectively. The dimensionless path length can be derived from

geometrical analysis (Appendix C) as

2
2(cos @ + tan?ﬁ')l/zcos Q
(tanZB' - tanza coszw)

X

2., 1/2
{fﬂﬂ_ﬁ_ [(1-H tan a)z-stin2¢] + 2R(1-H tan )tan B'tan O + thanzé}

2
os @
(61)
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The above expression holds in the tangent region (Bé <p'< 5;), excluding
the region where P < @, in which the path length S goes to infinity.

In the asymptote region (- ¢ <B' < ﬁ;), S 1is infinite for all o,
therefore ekc2= 0. As a direct consequence, in the region R < |(1-H

tan a)l in the base plane, the asymptote region extends all over the

cone and Sc approaches to zero regradless of the value of the absorp-

tion coefficient.

In general, the term e)‘c has the expression

B! ®
o ot
-A S 2
CKC(H,R,Q) = % b/‘ J[ e AK cos w tan B' sec B ' 4
B o (cos’p + tan’p')

(62)

where ¢ot’ ﬁé and § are given in Eqs. (39), (42), and (61), respec-
tively.

Numerical results of the spectral apparent emissivity are shown
in Figs. 11 through 22, for o« = 10°, 30°, 60°, AK = 0.1, 0.4, », and
H=0, 1, 2, 4. The values of the configuration factor F (or €, when

A

Ah-a'w) were obtained by adding F, calculated from the analytical

1

expressions in Eq. (55) and F, calculated numerically from Eq. (57).

2
For finite values of AX’ the spectral apparent emissivity is the

difference between F and ¢

e’ the latter being numerically computed

from Eq. (62). All numerical computations were performed by the use of
a 7090 Digital Computer.

As would be expected, at a certain location in the base plane,
the spectral apparent emissivity is larger for the conical gas body (a > 0)

than that for the cylindrical gas body (a = 0) of the same absorption

19



coefficient AX’ and is increasing with the cone angle. Furthermore,

as the cone angle increases, the effect of finite absorption coefficients
is diminishing and the spectral apparent emissivity approaches to its
black-body value or the configuration factor. This is due to the fact
that the asymptote region, which is eventually black in the sense of
infinite path length, becomes larger and larger as compared to the tan-
gent region, in which the effect of finite absorption exists. 1In the
limiting case when R < I(l-H tan a)l as mentioned before, the asymptote

region extends all over the cone, and € = F for all values of Axa

A
This is clearly shown in Figs. 20, 21, and 22.

CALCULATION OF TOTAL APPARENT EMISSIVITY OF
A SEMI-INFINITE CYLINDRICAL GAS BODY

The present section will try to demonstrate the method of
calculating the total apparent emissivity by utilizing the concept of
mean path length. This concept has been widely used in various calcu-
lations of gaseous radiative energy transfer. But the present case is
different from all other previous calculations in that the present mean
path length is a complicated function of the space variables, which
characterize the location in the base plane. The following calculation
of the total apparent emissivity in the base plane is based on a semi-
infinite cylindrical gas body. 1In this case, an approximate expression
of the mean path length can be established semi-empirically through
analytical considerations. For an infinite conical gas body, such an
expression would be entirely empirical.

Consider first a semi-infinite cylindrical gas body of a

sufficiently small absorption coefficient so that AKL << 1. Therefore,
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Therefore, Eq. (l4) may be approximated as

AL
AK) o~

e, = F(lL-e ~ FA L (63)

A

Comparing the above equation with the asymptotic expression of Gx for
H=0 and A << 1, Eq. (34), and using the exact result of F in

Eq. (25), one can find

1O = —3r7 [RE2<%’%>-<-RZ_I-{1>E1<ZZE’%>] (©4)
sin <:7§‘)
It should be emphasized that the above expression is valid for all values
of R, but under the limitations, H = 0 and AX << 1. The condition
AXL << 1 1is eliminated above, since L as calculated from Eq. (64) (see
Fig. 23) is of the order O[1]. Furthermore, a numerical check reveals
that the values of ex obtained by use of the mean path length, Eq. (14)
and Eq. (64), agree very well with the numerically calculated results
for all values of AX' It is also obvious that the agreement becomes
exact at two limits, AX = 0 and Ax-a ®, This indicates that the
restriction of Ah << 1 can also be removed, although no rigorous proof
has been established here.
For the case with shielding (H # 0) the asymptotic expression

is given in Eq. (36) for AX << 1, but only for the range R >> 1. Com-

bining Eqs. (24), (36) and (63) gives

L = X (65)

"1 . []
R tan " (sin 60 tan Qo)

under the conditioms Ak << 1l and R >> 1. 1In order to obtain an expres-

sion for all the values of R, a semi-empirical equation is suggested as
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4 sin B’
1t 1
L(H,R) = 1 > [R E, <§ > R
tan “(sin ﬁé tan @o)

x 1 x 2 4
E1<2,R>+ 5 cos Bo] (66)

The above equation is chosen based on the consideration that it should
reduce to Eq. (64) as H - 0, and to Eq. (65) for Ah << 1l, R>1.
Again, the comparison between the values of €, obtained from Eqs. (14)
and (66), and the numerical results from the computer indicates that the
condition AK << 1 1is not necessary in the present case. The values of
L as a function of H and R are plotted in Fig. 23.

With the expression of L as given in Eq. (66), one can cal-
culate the total apparent emissivity according to Eq. (17) with a given
infrared absorption spectrum. By using the available absorption measure-
ments for CO2 and H20 at high temperatures as shown in Figs. 24 and 26,3’4
numerical calculations have been performed and the results are presented
in Figs. 25 and 27. At the same location in the base plane, the apparent

emissivity of H,0 is found to be considerably larger than that of €O, -

2
This is due to the facl that there exist more and wider HZO absorption
bands in the significant wavelength region around the maximum point of

the Planck's distribution. The variations of the total apparent emissivity
€ with respect to H and R are similar to those of the spectral
apparent emissivity € - This implies that the gray-gas assumption does
not change the basic character of the functional dependence on H and

R, and the assumption can be successfully employed if the wavelength-

independent absorption coefficient is properly chosen. For CO2 at 2500°F

22




and 1 atm., it is found by comparing Fig. 25 with corresponding ex-figures,
Figs. 4 to 7, that the effective wavelength-independent coefficient A 1is
about 0.05 for all four values of H. For HZO at 2000°R and 1 atm., the

value of A is about 0.25 for different values of H.
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APPENDIX A

Asymptotic Expression for the Spectral Apparent Emissivity

of a Semi-Infinite Cylindrical Gas Body (H = O, AX << 1)

The correction term ¢ c for the spectral apparent emissivity

A

of a cylindrical gas body due to finite absorption coefficient is given

as

B, 9,
- ‘ -A S 2 ' 2_,
GAC(H’R) - % J[ J[ . A5 cos @ tan B' sec“B B’ do (26)
. o o

(cosz¢ + tanZB')

where the dinensionless path length § can be expressed as

1/2 1/2
2 2 2 2 2
S = Ton B' (1-R” sin“p) (cos“p + tan“B') (28)
By letting
2 s  1/2
N = (cos"¢p + tan“B') /tan B’ (A-1)
Equation (26) becomes
2 cPo no -mf -3
€ (HR) = = f j e (-177) dn do (a-2)
. [e} 00
where
1/2
n. = (c052¢ + tanZB‘) /tan B' (A-3)
o o o
and
2 2 1/2
m = 2A (1-R" sin"g) (A-4)
Equation (A-2) can be further written as
2 Yo 1 _-2 1 -mn 1 -mn o
_2 1.-2 -mm _m -1 -m -m
ehc(H’R) = X u/~ do [2 n e 5 n" e + mu/‘n e dn)]
. O 00
P T o
2 i1 -2 -m m _-1 -mn] mz -1 -mn
== j d@{ ‘-'2‘ U] e Y n e 2 J | e d"l}
. o o o
(A-5)
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Now consider the integral
n

)
J[ n-l ey dn

[+

b1

Since ﬂo > 1 for the range 0 < Bé < 5 and the integrand is always

psoitive, it follows
1 ﬂ&>1

fn'l ™™ an >j 77l ™ gn (A-6)

o« @
From tables of definite integrals9

' -1 -mM 2
J[ y| e ™ dm = 0.577 + fnm - m + EEET."' (A-7)

[+ ]

When A%.<< 1 and consequently m < 1, it is obvious that Eq. (A-5) can

be approximated by

(po nO
e (H,R) = 2 do 2172 ™ (1-mn) (A-8)
Ach? Fi¢ 2
‘. (o] o0
or
1 ¢° -2 -mno
€>\,c<H’R) =T f no e (1-mno) do (A-9)
. (o]

For the case of no shielding (H = O,Bé = % ), nm_=1, and

Eq. (A-9) becomes

CPO
1 -
€ (O,R) = = j e ™ (1-m) do (A-10)
(o]
or, since m << 1,
cPO
1 . -
€ (O,R) = = f (1-2m) dp (A-11)
’ (o]
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From Eq. (25) and (Eq. (A-4), Eq. (A-11) gives

®
by 0, , 1/2
€Ac(o’R) =F - . (1-R” sin"o) dop
"o
Or, ?
4hy 2 2 1/2
GK(O,R) = = (1-R” sin"@) do (A-12)
" o

By letting ﬁ sin @ = N, Eq. (A-12) can be rearranged as

“ 1l

€ (0,R) = —— / dN (A-13)
o &N

From integration tables,9 it follows

qom =2 (5.1)- (L) (2.1)] @

where El(m,K) and E2(¢,K) are the elliptic integrals of the first and

the second kind, respectively,

T

2 2 -1/2
El(T,K) = u/ (1-K" sin"Y) ayr (A-14)
o
and T ’ ) 1/2
EZ(T,K) = \/f (1-K~ sin™9) day (A-15)

(o]

Both functions are numerically tabulated9 for the present case 7T = % .

When R 1is very large (R >> 1) the elliptic integrals can be

approximated a59

El<§,%) -z [1+—1—2] (A-16)
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x 1 T 1
W(10) - 1 [+ 34]
2\ 2°R 2 R

and the spectral apparent emissivity becomes

A)\

GK(O,R) = 7 (35)

28




AFPPENDIX B

Asymptotic Expression for the Spectral Apparent Emissivity
of a Semi-Infinite Cylindrical Gas Body (AX <1, R>>1)

For AX <<'1, it is shown in Appendix A that

m0
Q@R = 2 [T 02 ™o () g (a-9)

o
where the limit 1, is given by Eq. (A-3). When R 1is very large
(R>> 1), the angle ¢ becomes very small and Eq. (A-3) can be

approximated by

1/2
(1 + tan?8') / / tap B' = —t— (B-1)
o / o sin B; ’

=3
]

Since no becomes independent of @, Eq. (A-9) can be expressed in

the following approximate form

P

(o]
€ (H,R) = 7 j (1-2mn ) dp (B-2)

(o] o

With m given by Eq. (A-4), direct integration of (B-2) gives

1 A\
€ (HsR) = o -
AcC x n2 o n,R

)

or
sin B Ak
- o .1/ 1 \_2A ' -

ehc(H’R) = - sin <’ R ‘> R sin Bo (B-3)

From Eq. (24) the spéctral apparent emissivity e can be

written as

& ,R) = 2 sin B} (36)

R
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In the case of no nozzle shielding <H = 0, B‘; = %>’ Eq. (36)

becomes
A)\
§OR) = = (35)

which is the same result as derived in Appendix A.
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APPENDIX C

Derivation of the Expression for the Path Length
Through a Conical Gas Body

There are two possible ways to obtain the expression for the
path length through a cone. In the first case, consideration is given
to the geometric properties of conic sections for different values of
the angle B', and geometric relations in plane geometry will be
employed. This would eventually lead to many geometric relations in
different regions of the cone according to P! The same results can be
obtained in a much more direct fashion by a three-dimensional geometric
analysis, as shown below.

The following derivation of the expression of path length s
is concerned with the region where B > Q, since s-»>wo as B <.

From Fig. (C-1), simple relations can be established as follows:

j r+c
tan B' = *¥>— = —— (c-1)
L1 L1 + L2
i i+ s'
tan B = =— = (C-2)
Ll L1 + L2
e d
tan O = = - (c-3)
L1+(recota h) L1+L2+(recota h)
G+s9)2 = b2+ (r+e)? (C-4)
and
e2 = i2 + r2 - 2rj (C-5)
Appropriate manipulation of Eqs. (C-1), (C~2) and (C-4) gives
b2 = (Ll + LZ)Z(tanZB - tanZB') (C-6)
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Since d2 = b2 + c2, there results from Eqs. (C-3) and (C-6):

L1+L2 ={[(recota~h)tan2a + r tanﬁ']+([(recota-h)tanza + r tan ﬁ']z +

1/
+[(recota-h)2tan2a-r2](tanZB-tanza)]/?}/(tanZB-tanza)
| (c-7)

The expression for L1 can be obtained by use of Eq. (C-5), in

which j, i and e are eliminated through the respective relations

given in Egs. (C-1), (C-2) and (C-3). The result is
2 [] 2 ' 2
L1 = [(recota-h)tan ¢+ r tanP ]-{[(recota-h)tan a4+ r tanP']” +

1/
[(recota-h)ztanza - rz](tanzﬁ - tanza))“é}/(tanzﬁ - tanza) (C-8)

Combining Eqs. (C-7) and (C-8) yields the expression for L,:

9*
1/2
2{[(recota-h)tan2a +r tanB']2+[(recora-h)2tan2a - r2](tan2ﬁ-tan2a))
L. =
2 (tan’p - tan’q)
(c-9)
According to Fig. (C-1), the path length s 1is given by
s = S' = L2 ren B = LZ (C"].O)
sin B sin B eqs B
where L, has the expression in Eq. (C-9). 1In order to have s in terms

2
of two independent parameters, B' and ¢, only, Eq. (10) must be used

and the expression for s becomes
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2 2, 1/2 2,
s = 2 °°§ ¢(cos q)2+ tan B') X { tanzﬁ [(r cota-h)ztanza - rzsinz(p] +
(tan"B' - tan"a cos Q) cos @ €

1/2
4+ 2 r tan ﬁ'(recota-h)tanza + rztanza} (Cc-11)

Therefore, the expression for the path length through a conical gas body

in dimensionless form is given by

) 2 2., 12 2.,
S = co; ®(cos q>2+ tanZB ) x{ tan B [(1-Htana)2 _ R2 sin2q>] +
(tan"B' - tan"Q cos ®) cos @
2 2 /2
2 R tan B' tan Q(l-HtanQ) + R tan a} (61)
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APPENDIX D

Shielding Effect on the Integration Limit of the Spectral
Apparent Emissivity of a Conical Gas Body

It can easily be shown from Fig. 10 that the lower limiting

angle ﬁé corresponding to a shielding height H 1is given by

By = tan’ <B'}:1'1'> (p-1)

Geometrically the upper limiting angle, Bi, is the one. which corresponds
to the limiting angle Qot for both of the tangents to the bottom circle
of the unshielded portion and to the conic section, determined by the
plane which has an inclination Bi to the vertical axis, and drawn from
the location irradiated. The equation of the tangent to the bottom circle

of the unshielded portion is simply given by

1

t = e
an CPOC RZ ~

and the equation of the tangent to the conic section is given in Eq. (39),

(p-2)

which is derived by setting the path-length expression given in Appendix

C equal to zero,

R tan & cot B' + (1-H tan &)

tan ¢ = (D-3)
ot (82 - (1-H tan 0)2]%/2
Equating Eqs. (D-2) and (D-3), and solving for Bi gives
, 2

ij - (1-H tan a)2 - (1-H tan Q) JR2~-_;1
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It is obvious that for Bé < B' < Bi the range of integration
on @ is not from 0 - (pot(ﬁ'). A complicated expression for this range
as a function of B'(Bé <B'< Bi) can be obtained, but it is so compli-
cated that an averaging procedure is desirable. It is accomplished by
considering that the range of integration is from 0 — @o(B;), where

B' is the arithmetic mean of the two limiting angles,
o

oy = ey rep - p{emt (B4

[2
. tan—l[ RYR® - 1 tan Q@ ]}(42)

JR‘ - (1-H tan a)‘ - (1-H tan @) \/Rz-l

This approximation is reasonable, since the difference between Bi and

Bé is very small, especially as R becomes larger.
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APPENDIX E

Configuration Factor for the Tangent Region of a
Conical Gas Body

The configuration factor for the tangent region of a conic gas

body is given in Eq. (51) as

o4
2 R cosze o  B(tan )Y/c
o Y dX dy
F,oa—O (E-1)
1 B x%+¥%4R %+ 2R ¥ sin 0)2
' Yo X=0 o o
Integration with respect to X9 yields the following expression:
F, = Fy; +F, (E-2)
where
R cos29 © 2
o= 2 ‘ (B/c)Y® tan & dy
1 ; (Y*4R242R Ysind) [ (Rzstecza/Cz)+R(2)+2RoYs in6]
Y% (E-3)
an R cos2 *
Fl, = f R 372 tan”! [ :S.B/g)Y = ] ¥
.Yy 44 +Ro+2RoYsin6) 14 +Rd+2RoYsin6)
° (E-4)
By integrating by parts, the integral Fl2 becomes
sin 6 -1 /B tan Q 1 Yosin o+ Ro
Flo = - =y tan c J*tx 22 172 | X
(Y “+R_“+2R Y sin 6)
' ’ o o oo
1 (B/C)Y tan a
tan [ 2 ] + Fiq (E-5)

v 4R 242R ¥ sin 6) /2
(o] [e] 0o 0
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(B/C)Rotan a (Ysiné + RQ)2 dy

2
== (E-6)
13 T (Y§+R§+2ROY5 in6) [ (R2Y2 secza/ 2 )+Rc2>+2 R Ys inf]

The integrals F11 and F13 can be combined and simplified to become
-]
1 (B/C)Rotan a ay
P +F,, =L j (E-7)
11 13 T Y [A_RZstecza/CZ+R02+2RoYsinG]
o

or, by direct integration,

o . B tan QO B tan @
F + F -

11 13 °© 5 7 o (7 3 o
2 R2+thanza 14 R2+B2 tanzcx

-1 (R3/BZC)sec2a Yo - (1-H tan @) tan O
X tan ]

(E-8)

JRZ + B2 tanza

where 6 and Ro have been eliminated by use of relations in Egs. (43)

and (47).

The results in Eqs. (E-5) and (E-8) with Yo given by Eq. (52)

give the configuration factor for the tangent region as

1 -1 /BtanQ 1 2 =
F, = == [(1-Htanx) tan] tan < C ) i {R"-Htano(1l-Htanx)

'2(1'Htana)2]tan'1{% [(1-HtanCt)+tana;H;'_]}+ B tan B tan o

2 J R2+B2 tanza T 'J R2-!-B2 tanza

X tan

-1 { LRZ/Bz)secza H - (l-l—lt'ana)[1-(R2/B2)cosec2a]tana }

J R2 + B2 tanza
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where

M =-J{ﬁ4[(1-utana)/tana]}2 R? + [(1-Htang)tanc H-R%+2(1-Htana) 212

(56)
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DIFFERENTIAL VOLUME
IN THE GAS BODY
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FiG.1 RADIATION FROM A GAS BODY
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FIG.2 THE CONICAL GAS BODY
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FIG.3 THE SEMI-INFINITE CYLINDRICAL GAS BODY
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FIG.10 GEOMETRICAL DIAGRAM OF A CONICAL GAS BODY
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FIG. C-1I THE PATH LENTH THROUGH A CONICAL GAS BODY
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